• Home
  • About
  • Projects
    • The angrite parent body
    • Vesta
    • Mercury
    • Mars
    • Moon
    • Space exploration
  • Publications
  • Contact
  Constraining the formation conditions and interior structures of smaller-sized planetary bodies
Foto
Peer-reviewed literature
​

Please visit my Google scholar profile for more details
​(327 citations, H index of 10, since May 2016) (as of November 19, 2020).   







​

​
Last update: November 19, 2020
* denotes (former) BSc/MSc student status

Manuscripts in  various stages of preparation
[x] Steenstra ES, Berndt J, Klemme S, Rohrbach A, Bullock ES, van Westrenen W, Walter M, Shahar A. Sulfide liquid - silicate melt
      distribution of highly siderophile elements at highly reduced conditions: Implications for terrestrial late accretion. In prep. 
[x] Steenstra ES., Lord O., Vitale S., Bullock E.S., Shahar A., Walter M. The solubility of sulfur in a deep terrestrial magma ocean.
      In prep.
[x] Steenstra ES., Berndt J., Klemme S., A. Heginbotham, Shahar A., Davies G.E. Analysis of the CHARM copper reference
​    materials using 193 excimer LA-ICP-MS: assessment of homogeneity, matrix effects and their implications for geochemical
    provenancing of bronze artefacts. In prep. 
[x] Steenstra ES., Berndt J., Klemme S., van Westrenen W., Fei Y. High-temperature partitioning of volatile elements in the
    Martian core? In prep.
​

Published - Scientific articles 
[23] Steenstra ES, Berndt J, Klemme S, Snape J, Bullock ES, van Westrenen W (2020i). The fate of sulfur and chalcophile elements
      during crystallization of the lunar magma ocean. JGR: Planets, accepted/in press. 

[22] Steenstra ES, Kelderman E*, Berndt J, Klemme S, Bullock ES, van Westrenen W. Highly reduced accretion of the Earth by
      large impactors? Evidence from elemental partitioning between sulfide liquids and silicate melts at highly reduced 
      conditions (2020h). Geochimica et Cosmochimica Acta 286, 248-268.
[21] Steenstra ES, Berndt J., Klemme S., Fei Y, van Westrenen W ​(2020g). A potential high temperature-origin of the Moon and its

       geochemical consequences.  Earth and Planetary Science Letters, 538, 116222.
[20] Steenstra ES, Berndt J., Klemme S., van Westrenen W, A. Shahar. Addressing matrix effects for 193 nm excimer LA-ICP-Ms
​       analyses of Fe-rich sulfides and a new predictive model (2020f). Journal Anal. At. Spectrometr. 35, 498-509. ​
[19] Steenstra ES, van Haaster F*, van Mulligen RM*,  S. Flemetakis, Berndt J,  Klemme S ,van Westrenen (2020e). An
        experimental assessment of the chalcophile behavior of F, Cl, Br and I: implications for the fate of halogens during
        planetary accretion and th
e formation of magmatic ore deposits. Geochimica et Cosmochimica Acta 273, 275-290.
[18] Steenstra ES, van Westrenen W. Geochemical constraints on core-mantle differentiation in Mercury and the aubrite parent 
​         body (2020d).
 Icarus 340, 113621.
[17] Steenstra ES, Berndt J, Klemme S, Rohrbach A, Bullock ES, van Westrenen W. An experimental assessment of the potential
        of sulfide saturation of the source regions of eucrites and angrites: implications for asteroidal models of core formation, late
        accretion and volatile element depletions (2020c). Geochimica et Cosmochimica Acta 269, 39-62. 
[16] Steenstra ES, Trautner VT*, Berndt J, Klemme S, van Westrenen W (2020b).  Trace element partitioning between sulfide-,
        metal- and silicate melts at highly reduced conditions: insights into the distribution of volatile elements during core
        formation in reduced bodies. Icarus 335, 113408. Link
[15] Steenstra ES, Seegers AX*, Putter R*, Berndt J, Klemme S, Matveev S, Bullock E, van Westrenen W (2020a). Metal-silicate
       partitioning systematics of siderophile elements at reducing conditions: a new experimental database. Icarus 335, 113391.
       Link
[14] Steenstra ES, Berndt J, Klemme S, van Westrenen W (2019b). LA-ICP-MS analyses of trace elements in Fe-rich alloys:
       quantification of matrix effects. Journal of Analytical Atomic Spectrometry, 34, 222-231. Link
[13] Steenstra ES Dankers D*, Berndt J, Matveev S, Klemme S, van Westrenen W. Significant depletion of volatile elements in the
      mantle of asteroid Vesta due to core formation (2019a). Icarus, 317, 669-681. Link 
[12] Steenstra ES, van Westrenen W (2018c) A synthesis of geochemical constraints on the inventory of light elements in the
       core of Mars. Icarus, 315, 69-78. Link

[11] Knibbe JS, Luginbuhl SM, Stoevelaar R, van der Plas W, van Harlingen NDM, van de Geer R, Rai N, Steenstra ES, van
       Westrenen W (2018) Calibration of a multi-anvil high-pressure apparatus to simulate planetary interior conditions. EPJ
​       Techniques and Instrumentation. 
[10] Steenstra ES, Agmon N*, Berndt J, Klemme S, Matveev S, van Westrenen W. (2018b) 
Depletion of potassium and sodium in
​       mantles of  Mars, Moon and Vesta by core formation. Scientific Reports, 8, 7053.  Link 

[9] Steenstra ES, Seegers AX*, Eising J*, Tomassen B*, Webers FPF*, Berndt J, Klemme S, Matveev S, van Westrenen W (2018a) 
      Evidence for a sulfur-undersaturated lunar interior from the solubility of sulfur in lunar melts and sulfide-silicate
      partitioning of siderophile elements
.  Geochimica et Cosmochimica Acta 231, 130-156. Link
[8] Steenstra ES, Lin YH, Dankers D*, Rai N, Berndt J, Matveev S, van Westrenen W (2017c) The lunar core can be a major
      reservoir for volatile elements S, Se, Te and Sb. Scientific Reports, 7, 14552. Link
[7] Steenstra ES, Sitabi AB*, Lin YH, Rai N, Knibbe JS, Berndt J, Matveev S, van Westrenen W (2017b) The effects of silicate melt
      composition on metal-silicate partitioning of siderophile elements and core formation in the angrite parent body. Geochimica
​      et Cosmochimica Acta, 212, 62-83. Link
[6] Lin YH, Tronche EJ, Steenstra ES, van Westrenen W (2017) Experimental constraints on the solidification of a nominally dry
      lunar magma ocean. Earth and Planetary Science Letters, 471, 104-116.
[5] Steenstra ES, Lin YH, Rai N, Jansen M, van Westrenen W (2017a). Carbon as the dominant light element in the lunar core.        
      American Mineralogist, 102,
92-97. Link
[4] Lin YH, Tronche EJ, Steenstra ES, van Westrenen W (2016) Evidence for an early wet Moon from experimental crystallization          of the lunar magma ocean. Nature Geoscience, 10, 14-18.
[3] Steenstra ES, Martin DJP, McDonald FM et al (2016c) Analyses of Robotic Traverses and Sample Sites in the Schrödinger                  basin for the HERACLES Human-Assisted Sample Return Mission Concept. Advances in Space Research, 58, 1050-1065. Link

[2] Steenstra ES, Rai N, Knibbe JS, Lin YH, van Westrenen W (2016b) New geochemical models of core formation in the Moon               from metal-silicate partitioning of 15 siderophile elements. Earth and Planetary Science Letters, 441, 1-9. Link

[1] Steenstra ES, Knibbe JS, Rai N, van Westrenen W (2016a) Core formation in Vesta: constraints from metal-silicate partitioning        of siderophile elements. Geochimica et Cosmochimica Acta, 177, 48-61. Link


Books and book chapters
[9] Steenstra ES (2019) Constraints on planetary formation, accretion and differentiation from experimental petrology. PhD
      thesis, ISBN 978-94-028-1355-5. 
[8] Gaffney A, Warren P, Borg L, Donaldson Hanna K, Draper D, Dygert N, Elkins-Tanton L, Joy K, Prissel T, Rapp J, Steenstra ES,
      van Westrenen W. Initial differentiation of the Moon. In New Views of the Moon 2 - Reviews in Mineralogy and Geochemistry
​      (under review). 
[7] McCubbin FM, Barnes JJ, Ni P, Hui H, Klima RL, Burney D, Day JMD, Magna T, Boyce JW, Tartese R, Vander Kaaden KE,
    Steenstra ES,
Elardo SM, Zeigler RA, Anand M, Liu Y. Endogenous lunar volatiles. In New Views of the Moon 2 - Reviews in
​     Mineralogy and Geochemistry (under review). 

[6] Steenstra ES, van Westrenen W (2017) Lunar Magma Ocean: Comparison with other magma oceans. Encyclopedia of Lunar
     Science.

[5] Steenstra ES, van Westrenen W (2017) Sulfides in the Moon. Encyclopedia of Lunar Science, Springer.
[4] Steenstra ES, van Westrenen W (2017) Lunar Core Composition. Encyclopedia of Lunar Science, Springer.

[3] Steenstra ES, van Westrenen W (2017) Lunar Core Dynamo. Encyclopedia of Lunar Science, Springer.
[2] Steenstra ES, van Westrenen W (2017) 
Lunar Core Formation. Encyclopedia of Lunar Science, Springer.

[1] Steenstra ES, van Westrenen W (2017) Siderophile elements in the lunar mantle. Encyclopedia of Lunar Science, Springer.


Popular science
​
- Radio NPO Radio 1, 09-03-2019. Focus, Hoe is de Maan ontstaan? 
- Radio NPO Radio 1, 12-10-2018. Nieuws & Co, Spectaculaire én realistische film over de eerste man op de maan

- Radio NPO Radio 1, 27-07-2018. Spraakmakers, Naast bloedmaan vanavond ook Mars, Jupiter, Saturnus en Venus zichtbaar. 
- Radio NPO Radio 1, 18-06-2018. Nieuws & Co, Maanmeteoriet zaait opnieuw twijfel over ontstaangeschiedenis Maan. 
- Radio NPO Radio 1, 04-05-2018. Nieuws & Co, NASA-zoektocht naar 'marsbevingen' begint. 
- Geobrief, 17-06-2017.  Waar zijn de vluchtige elementen in de Maan gebleven?
- Kennislink, 13-05-2016. Verdwenen maanelementen teruggevonden in de kern.

- Scienceguide, 21-12-2015. Wij zijn de uitzondering.
- Advalvas, 13-10-2015. Promovendus kreeg onverwacht mailtje van NASA.

Published conference abstracts 
[40] Steenstra ES, van Westrenen W, Berndt J, Klemme S, Fei Y (2019) High-temperature partitioning of volatile elements in the
        cores of Moon and Mars? 50th LPSC #1071.
[39] Steenstra ES, Berndt J, Klemme S, Rohrbach A, van Westrenen W (2019) The fate of sulfur and chalcophile elements during
        crystallization of the lunar magma ocean. 50th LPSC #1137.
[38] Trautner V, Steenstra ES, Berndt J, Klemme S, van Westrenen W (2019) Sulfide-silicate and metal-silicate partitioning 
        systematics at highly reduced conditions: Implications for distribution of volatile elements in Mercury and the Aubrite Parent
        Body. 50th LPSC #2132.
[37] Kelderman E, Steenstra ES, Berndt J, Klemme S, Rohrbach A, van Westrenen W (2019) Sulfide-silicate partitioning
        systematics of Th, U, and Li, Rb, Cs: Implications for differentiation of Mercury and other planets. 50th LPSC #1057.
[36] van Haaster F, Steenstra ES, van Mulligen R, Berndt J, Klemme S, Rohrbach A, van Westrenen W (2019) Experimental
​      quantification of the sulfide-silicate partitioning behavor of halogens and implications for halogen depletions in planetary
​       mantles. 50th LPSC #2132.
[35] van Westrenen W, Steenstra ES, Berndt J, Klemme S, Rohrbach A (2019) Did eucrites and angrites experience sulfide
        saturation? 50th LPSC #1148.
[34]  van Westrenen W, Steenstra ES (2018) Geochemical constraints on the composition of the Martian core. 49th LPSC #1025.
[33] van Westrenen W, Steenstra ES, Dankers D, Berndt J, Matveev S, Klemme S (2018) The Vestan core as a major reservoir for
        volatile elements. 49th LPSC #1197.
[32] Steenstra ES, Seegers AX, Eising J, Tomassen BGJ, Webers FPF, Berndt J, Klemme S, Matveev S, van Westrenen W. (2018)
        Evidence for a sulfur-depleted lunar interior from the solubility of S in lunar melts. 49th LPSC #1199. 
[31] Steenstra ES,  Berndt J, Klemme S, Matveev S, Fei Y, van Westrenen W. (2018) Assessment of a high-energy origin of the
        Moon from metal-silicate partitioning of siderophile elements at high temperatures. 49th LPSC #1198.
[30] ​Steenstra ES, Seegers AX, Lin YH et al (2017) Metal-silicate partitioning of volatile siderophile elements: constraining
        volatiles in the early Earth-Moon system
. European Lunar Symposium, Munster.
[29] Steenstra ES, Agmon N, Arntz GL et al (2017) Metal-silicate partitioning of K as a function of composition and temperature
       and its abundance in the lunar core
. European Lunar Symposium, Munster.
[28] Lin YH, Hui HJ, Li Y, Hsu YJ, Chen W, Steenstra ES, van Westrenen W (2017) A lunar hygrometer based on plagioclase-melt
       partitioning of hydrogen. 
European Lunar Symposium, Munster.
[27] van der Waal ARW, Steenstra ES, Luginbuhl SM et al (2017) The effect of water on the metal-silicate partitioning behaviour 
        of moderately siderophile elements
. European Lunar Symposium, Munster.
[26] Gaffney AM, Warren PH, Borg LE, Draper DS, Dygert N, Elkins-Tanton LT, Joy K, Prissel T, Rapp J, Steenstra ES, van  
         Westrenen  W (2017) Magmatic Evolution 1: Initial Differentiation. New Views of the Moon 2 meeting, Munster.
[25] Steenstra ES, Lin YH, Dankers D et al (2017) Metal-silicate partitioning of S, Se, Te, and Sb suggests minor volatile loss during
        lunar formation and no volatile-rich late veneer. 
48th LPSC #1051.
[24] Steenstra ES, Putter R, Seegers AX et al (2017) Significant non-linear pressure effects on interaction coefficients of            
        siderophile elements in FeSi alloys: Implications for geochemical models of core formation in the Earth.
 48th LPSC #1050.
[23] Lin YH, Hui HJ, Li Y, Hsu YJ, Chen W, Steenstra ES, van Westrenen W (2017) A lunar hygrometer based on plagioclase-melt
       partitioning of hydrogen. 
48th LPSC #1286.
[22] Seegers AX, Steenstra ES, Putter R et al (2017) The effect of Si and fO2 on the metal-silicate partitioning of volatile siderophile  
        elements: Implications for the Se/Te systematics of the bulk silicate Earth. 
48th LPSC #1053.
[21] Crockett M, Steenstra ES, Lin YH et al (2017) The effects of carbon on metal-silicate partitioning of volatile siderophile       
        elements and core formation in the Moon. 
48th LPSC #1054.
[20] Agmon N, Steenstra ES, Arntz GL et al (2017) Metal-silicate partitioning of K as a function of composition and temperature:
        testing its feasibility as a heat producing element in planetary cores
. 48th LPSC #1052.
[19] Putter R, Steenstra ES, Seegers AX et al (2017) Effects of fO2 on Si metal-silicate partitioning of refractory and moderately            
        volatile siderophile elements: Implications for the Si content of Mercury's core. 
48th LPSC #1055.
[18] Crockett M, Putter R, Seegers A, Rai N, van Westrenen W, Steenstra ES (2016) Metal-silicate partitioning of
        siderophile elements: the effects of oxygen fugacity and carbon
. ELS 2016, Amsterdam.
[17] Kelderman E, Davids B, Lin YH, Rai N, van Westrenen W, Steenstra ES (2016) Compressibility and density of hydrous
        high-Ti lunar red and black glass
. ELS 2016, Amsterdam.
[16] Steenstra ES, Lin YH, Dankers D et al (2016) Metal-silicate partitioning of volatile siderophile elements suggest volatiles were                not lost during lunar formation. ELS 2016, Amsterdam.
[15] Rai N, Steenstra ES, Downes H, van Westrenen W (2016) Signatures of highly siderophile elements in the lunar                                      mantle: HPHT core-mantle equilibration or late accretion addition of a chondritic component? 4th International HSE                                  Geochemistry Workshop, Durham, UK.
[14] Steenstra ES, van Westrenen W (2016) Review of geochemical constraints on the formation and composition of the lunar core.             New views of the Moon #2. #6039.
[13] Steenstra ES, Lin YH, Rai N et al (2016) Carbon as the dominant light element in the lunar core. 47th LPSC #1842.
[12] Steenstra ES, Dankers D, Lin YH et al (2016) ­Metal-silicate partitioning of S, Mn, Cr, Ni, As, Se, Cd, In, Sb, Te, and Pb at high                    pressure and temperature and its relevance for core formation in the Moon, asteroid Vesta and the angrite parent body. 47th                   LPSC #1851.

[11] van Westrenen W, Steenstra ES, Knibbe JS et al (2016) Metal-silicate partitioning of P, V, Co, Mo, Ge, and W and core formation
        in the angrite parent body.
 47th LPSC #1630.

[10] Lin YH, Steenstra ES, van Westrenen (2016) Hydrous early Moon? Constraints from hydrous lunar magma ocean solidification            experiments. 47th LPSC #1295. 
[9] Lin YH, Tronche EJ, Steenstra ES et al (2016) Solidification evolution of a dry lunar magma ocean: Constraints from experimental         petrology. 47th LPSC #1296. 
[8] Martin DJP, McDonald FE, Steenstra ES et al (2016) A long duration human-assisted robotic sample return mission to the                      Schrödinger basin part 2: traversing towards the basin wall. 47th LPSC #1468.
[7] McDonald FE, Martin DJP, Steenstra ES et al (2016) A long duration human-assisted robotic sample return mission to the                       Schrödinger basin part 1: traversing the basin center. 47th LPSC #1464. 
[6] Venturino CS, Martin DJP, McDonald FE, Paisarnsombat S, Steenstra ES et al (2016) Lunar pyroclastic soil mechanics and                   trafficability in the Schrödinger basin. 47th LPSC #1676. 
[5] D. Kring, Steenstra ES, Bottoms S et al (2015) Analyses of robotic traverses & sample sites in the Schrödinger basin for the                     HERACLES human-assisted lunar sample return mission concept. Moon 2020-2030, ESTEC, Noordwijk. 
[4] Steenstra ES, Rai N, Berndt J, van Westrenen W (2015) Experimental metal-silicate partitioning of siderophile elements at high             pressures and temperatures and its relevance for lunar core formation. ELS 2015, Frascati, Italy.

[3] Steenstra ES, Rai N, Knibbe JS, van Westrenen W (2015) New geochemical models of core formation in the Moon:                                     constraints from metal-silicate partitioning of 14 siderophile and chalcophile elements. 46th LPSC #1490 and in: ELS 2015,
      Frascati, Italy.
[2] Steenstra ES, 
Rai N, van Westrenen W (2015) Core formation in Vesta: constraints from metal-silicate partitioning of siderophile           elements. 46th LPSC #1421. 
[1] Steenstra ES, Rai N, van Westrenen W (2014) Core-mantle differentiation in the Moon: constraints from metal-silicate partitioning        of moderately siderophile elements in a hydrous magma ocean. In: NAC12, The Netherlands and in: ELS 2014, London, UK

Online access to papers
​

scss.pdf
File Size: 3664 kb
File Type: pdf
Bestand downloaden

Aangestuurd door Maak uw eigen unieke website met aanpasbare sjablonen.